Imprinted chromosomal regions of the human genome display sex-specific meiotic recombination frequencies

نویسندگان

  • Andràs Pàldi
  • Gàbor Gyapay
  • Jacques Jami
چکیده

BACKGROUND Meiotic recombination events do not occur randomly along a chromosome, but appear to be restricted to specific regions. In addition, some regions in the genome undergo recombination more frequently in the germ cells of one sex than the other. Genomic imprinting, the process by which the two parental alleles of a gene are differentially marked, is another genetic phenomenon associated with inheritance from only one parent or the other. The mechanisms that control meiotic recombination and genomic imprinting are unknown, but both phenomena necessarily depend on the presence of some DNA signal sequences and/or on the structure of the surrounding chromatin domain. RESULTS In the present study, we compared the frequencies of sex-specific recombination events in three chromosomal regions of the human genome that contain clustered imprinted genes. Alignment of the genetic and physical maps of the ZNF127-SNRPN-IPW-PAR-5-PAR-1 region on chromosome 15q11-q13 (associated with Prader-Willi and Angelman syndromes) and the IGF2-H19 region on chromosome 11p15.5 (associated with Beckwith-Wiedemann syndrome) shows that both regions recombine with very high frequency during male meiosis, and with very low frequency during female meiosis. A third region around the WT-1 gene on chromosome 11p13 also recombines with higher frequency during male meiosis. CONCLUSIONS The results show that the two best-known imprinted regions in the human genome are characterized by significant differences in recombination frequency during male and female meioses. A third, less well-characterized, imprinted region shows a similar sex-specific bias. On the basis of these observations, we propose a model suggesting that the region-specific differential accessibility of DNA that leads to differential recombination rates during male and female meioses also leads to the male- and female-specific modification of the signal sequences that control genomic imprinting.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human Imprinted Chromosomal Regions Are Historical Hot-Spots of Recombination

Human recombination rates vary along the chromosomes as well as between the two sexes. There is growing evidence that epigenetic factors may have an important influence on recombination rates, as well as on crossover position. Using both public database analysis and wet-bench approaches, we revisited the relationship between increased rates of meiotic recombination and genome imprinting. We con...

متن کامل

Local and sex-specific biases in crossover vs. noncrossover outcomes at meiotic recombination hot spots in mice.

Meiotic recombination initiated by programmed double-strand breaks (DSBs) yields two types of interhomolog recombination products, crossovers and noncrossovers, but what determines whether a DSB will yield a crossover or noncrossover is not understood. In this study, we analyzed the influence of sex and chromosomal location on mammalian recombination outcomes by constructing fine-scale recombin...

متن کامل

O-36: Genome Haplotyping and Detection of Meiotic Homologous Recombination Sites in Single Cells, A Generic Method for Preimplantation Genetic Diagnosis

Background: Haplotyping is invaluable not only to identify genetic variants underlying a disease or trait, but also to study evolution and population history as well as meiotic and mitotic recombination processes. Current genome-wide haplotyping methods rely on genomic DNA that is extracted from a large number of cells. Thus far random allele drop out and preferential amplification artifacts of...

متن کامل

Silencing of unpaired meiotic chromosomes and altered recombination patterns in an azoospermic carrier of a t(8;13) reciprocal translocation.

BACKGROUND Male carriers of structural chromosomal abnormalities provide a useful model for studying the effects of impaired synapsis on human meioses and male fertility. METHODS We used immunofluorescent techniques to examine recombination (MLH1), synapsis (SYCP3/SYCP1) and transcriptional inactivation (BRCA1/gammaH2AX/RNA polymerase II) of meiotic chromosomes in an azoospermic carrier of a ...

متن کامل

Gene Conversion Occurs within the Mating-Type Locus of Cryptococcus neoformans during Sexual Reproduction

Meiotic recombination of sex chromosomes is thought to be repressed in organisms with heterogametic sex determination (e.g. mammalian X/Y chromosomes), due to extensive divergence and chromosomal rearrangements between the two chromosomes. However, proper segregation of sex chromosomes during meiosis requires crossing-over occurring within the pseudoautosomal regions (PAR). Recent studies revea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 5  شماره 

صفحات  -

تاریخ انتشار 1995